

Subscriber access provided by ISTANBUL TEKNIK UNIV

On the Synthesis of 4-Keto-Steroidal Alkaloids

Elizabeth Viloria, Gina Meccia, and Alfredo N. Usubillaga

J. Nat. Prod., 1992, 55 (9), 1178-1185• DOI: 10.1021/np50087a003 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50087a003 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

ON THE SYNTHESIS OF 4-KETO-STEROIDAL ALKALOIDS

ELIZABETH VILORIA, GINA MECCIA, and ALFREDO N. USUBILLAGA*

Instituto de Investigación, Facultad de Farmacia, Universidad de Los Andes, Mérida, Venezuela

ABSTRACT.—To obtain 4-keto-steroidal alkaloids from solasodine, two routes were tried: allylic acetoxylation of (22S, 25R)-22, 26-N-Cb2-epiminocholest-5-ene-3 β , 16 β -diol-acetate [3]; and hydroboration of $(22S, 25R)-16\beta$ -acetyl-22, 26-N-Cb2-epiminocholest-4-en-3-one [11]. The first route yielded $(22S, 25R)-3\beta$ -hydroxy-16 β -acetoxy-22, 26-N-Cb2-epiminocholestan-5,6-oxido-4-one [10]. The second one yielded two products: $(22S, 25R)-3\beta$ -hydroxy-16 β -ethoxy-22, 26-N-Cb2-epimino-5 α -cholestan-4-one [22] and its 16 β -acetoxy homologue [23].

Steroidal alkaloids with a 3-hydroxy-4-keto moiety on ring A have been found in two species of Solanaceae, Solanum oblongifolium Bitter (1) and Solanum ecuadorensis Bitter (2). The interesting pharmacological properties of these alkaloids (3) led us to consider the convenience of obtaining them by synthesis. As a first approach to the problem, the introduction of a 4-keto group in the steroid nucleous was tried. Solasodine was used as starting material because it was available and is easily transformed into an epiminocholestane type alkaloid with a lateral chain where the nitrogen atom is α oriented, as in solaphyllidine (4) and related alkaloids (5).

Allylic oxydation of cholesteryl acetate using SeO_2 has been reported by Rosenheim and Starling (6) with rather low yields. On the other hand $Pb(OAc)_4$ oxidation of cholest-5-en-3-one (7) introduces a 4-equatorial hydroxyl group which is difficult to oxidize. Therefore, it was considered convenient to try allylic acetoxylation (8) to introduce a 4-axial hydroxyl.

Reduction of solasodine with NaBH₄ (9) produced (22S, 25R)-22, 26epiminocholest-5-ene-3 β -16 β -diol [1]. To protect the amino group, 1 was treated with benzyl chloroformate (Cbz). It is interesting to note that the aromatic ring of the Cbz moiety interacts with the H-26eq, deshielding it strongly, causing this proton to appear at δ 3.80 in the ¹H-nmr spectrum. The H-26eq is coupled to the H-26ax (J = 14 Hz), and the latter is also coupled to the H-25ax (J = 5 Hz). Finally, the H-25ax is coupled to the C-27 methyl. Decoupling experiments established these relationships, and a similar situation is present in certain sapogenins (10).

To obtain a compound amenable to allylic acetoxylation, the N-CBz derivative [2] was treated with Ac_2O/C_5H_5N to yield the 3, 16-diacetoxy derivative [3]. Treatment with Br_2 and silver acetate in CHCl_3 at low temperature produced a mixture of starting material 3 and three products: (22S,25R)-N-Cbz-22,26-epiminocholest-5-ene-3 β ,4 β ,16 β -triol-acetate [5], (22S,25R)-3 β ,16 β -di-0-acetyl-22,26-N-Cbz-epiminocholest-5-en-4 β -ol [6], and its 4 β ,16 β -di-0-acetyl-3 β -ol isomer 7. Unfortunately the desired product 6 was obtained in lowest yield; therefore 5, 7, and a mixture of 6 and 7 were subjected to mild hydrolysis with K_2CO_3 in MeOH, conditions that do not affect the acetate on C-16. The 3 β ,4 β -diol 8 was obtained almost quantitatively. Selective acetylation of 8 with Ac_2O/C_5H_5N at 0° gave 6 in 54% yield. Mild oxidation of 6 with Jones reagent yielded 9, which, upon treatment with $K_2CO_3/MeOH$ at room temperature, gave 10.

Even though 10 is an interesting compound, the desired product was an alkaloid with a 3 β -OH, 4-keto moiety with no neighboring epoxy group. Therefore, a new scheme was tried to obtain a compound devoid of the Δ 5 double bond. To obtain such a compound, **3** was treated with K₂CO₃/MeOH, and the product **4** of hydrolysis was subjected to Oppenauer oxidation to yield **11**, which is a suitable compound to intro-

duce a hydroxyl at C-4 by hydroboration. The hydroboration reaction, which was performed according to Zweifel and Herbert (11), rendered two products in about equal proportions. The less polar product **12**, R_f 0.27, showed an ethoxy group at C-16, while the other product **16**, R_f 0.16, had an 0-acetyl. The formation of **12** was probably caused by an excess of diborane, as reduction of carbonyls under these conditions has been reported in the literature (12).

In order to oxidize the hydroxyl at C-4 without affecting the one at C-3, selective acetylation of **12** and **16** was conducted as previously described for **8**. In each case three acetylated derivatives were obtained: **13**, **14** and **15** from **12**, and **17**, **18**, and **19** from **16**. Mild oxidation of **14** with Jones reagent yielded the 3-O-acetyl-4-keto derivative **20**. The ¹³C-nmr spectrum of **20** showed the signal of C-3 at 76.2 ppm, that of C-5 at 57.4 ppm, and the carbonyl (C-4) at 205.3 ppm, which agrees with values reported for solaphyllidine acetate (13). In a similar manner, **21** was obtained by mild oxidation of **18**.

For comparison, **15** was treated with Jones reagent, yielding **24**. In this compound C-4 appears at 77.2 ppm and C-5 at 51.5 ppm. Treatment of **20** and **21** with $K_2CO_3/$ MeOH produced the corresponding 3-OH, 4-keto derivatives **22** and **23**. These compounds show the C-4 carbonyl at 212.4 ppm as observed in solaphyllidine.

Because catalytic reduction could not be used to cleave the Cbz group (14), because it would reduce the carbonyl, acid hydrolysis with HBr/HOAc (15) was tried unsuccessfully. On the other hand, removal of the Cbz group using a strong Lewis acid such as AlCl₃ (16) proved equally inadequate. This demonstrated the convenience of using a protecting group like *t*-butyloxycarbonyl (BOC) (17), which can be removed by acid hydrolysis (18), or thiothiazolone (19).

The overall yield for compound **10** was approximately 7%, while the yield of **23** from solasodine was about 4%. The yield of the latter could be doubled if partial reduction of the 16-0-acetate during hydroboration is avoided; this could be accomplished if this group is hydrolyzed prior to hydroboration.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Tlc was performed on Si gel plates, using C_6H_{14} -EtOAc (2:1) as a solvent unless otherwise stated, and spots were visualized with I_2 vapor. Melting points were determined on a Fisher-Johns hot stage and are uncorrected. Optical rotations were measured in a Schmidt-Haensch polarimeter. The ir spectra were recorded using a Perkin-Elmer spectrometer model Fx-1720 as KBr disks. The ¹H-nmr and ¹³C-nmr spectra were determined in CDCl₃ with TMS as internal standard, and chemical shifts are expressed in ppm; a Varian Ft-80 apparatus was used, and standard proton noise-decoupled and attached proton test (APT) spectra were recorded for all compounds. Microanalyses were conducted at Prof. Melissa & G. Reuter's Analytical Laboratories, D-5270 Gummersbach, Germany. Solasodine dihydrochloride was obtained from Oss-Diosynth (Holland).

(225,25R)-22,26-EPIMINOCHOLEST-5-ENE-3 β , 16 β -DIOL [1].—To an ice-cold solution of 60 g (0.145 mol) of solasodine in 3.5 liters of MeOH/CH₂Cl₂, 22 g (0.58 mol) of NaBH₄ was added slowly with stirring. After 2 h, ice-H₂O was added and the mixture was extracted twice with CHCl₃. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under vacuum to dryness. The crude product was crystallized from MeOH to give 53.1 g (88%) of dihydrosolasodine: mp 259–262°, [lit. (20) 265–266°]; ir ν max cm⁻¹ 3410, 3190, 1170, 1080; ¹H nmr (80 MHz, CDCl₃) δ 0.85 (3H, d, J = 6 Hz, 27-Me), 0.94 (3H, s, Me-18), 1.03 (3H, s, Me-19), 1.08 (3H, d, J = 6 Hz, Me-21), 2.95 (1H, d, J = 12 Hz, H-26), 3.45 (1H, m, H-3 α), 4.40 (1H, m, H-16 α), 5.30 (1H, bd, J = 4 Hz, H-6).

(225,25*R*)-N-CBZ-22,26-EPIMINOCHOLEST-5-ENE-3 β ,16 β -DIOL [2].—A solution of 45 g (0.108 mol) of 1 in 1.3 liters of CHCl₃ was mixed with 647 ml of 5% NaHCO₃ and 34 g (0.22 mol) of benzyl chloroformate (Cbz-Cl) in toluene, prepared according to Carter *et al.* (21). After shaking for 9.5 h an additional amount (11 g) of CbzCl was added and left overnight at room temperature. The CHCl₃ phase was shaken several times with H₂O,dried over anhydrous Na₂SO₄, and concentrated to dryness. The residue was chromatographed on a Si gel column. Elution with C₆H₆-EtOAc (10:1) yielded 34.75 g (58.4%) of 2, which crystallized from EtOH-Me₂CO (1:1): mp 170–171°; [α]²⁵D – 14.5 (*c* = 0.31, MeOH). Calcd for C₃₅H₅₁NO₄, C 76.46, H 9.35, N 2.55; found C 76.09, H 9.11, N 2.44. Ir ν max 3440, 1693 cm⁻¹; ¹H

nmr (80 MHz, CDCl₃) δ 0.84 (3H, d, J = 6 Hz, Me-21), 0.86 (3H, s, Me-18), 0.98 (3H, s, Me-19), 1.00 (3H, d, J = 6 Hz, Me-27), 3.01 (1H, dd, J = 14, 5 Hz, H-26ax), 3.80 (1H, d, J = 14 Hz, H-26eq), 4.12 (1H, m, H-16 α), 5.10 (2H, ABq, J = 22, 12 Hz, H-Bz), 7.34 (5H, bs, aromatic H).

(225,25*R*)-*N*-Cbz-22,26-EPIMINOCHOLEST-5-ENE-3 β , 16 β -DIOL-ACETATE [**3**].—To a solution of 30 g of **2** in pyridine, 150 ml of Ac₂O was added. After 3 days at room temperature cold H₂O was added, and the precipitate was filtered, washed with H₂O, and crystallized from MeOH, yielding 34 g of diacetate: mp 110–112°; ir ν max 1732, 1686, 1245 cm⁻¹; ¹H nmr (80 MHz, CDCl₃) δ 0.84 (3H, s, Me-18), 0.90 (3H, d, J = 6 Hz, Me-21), 0.96 (3H, d, J = 6 Hz, Me-27), 1.04 (3H, s, Me-19), 2.00 (3H, s, OAc), 2.04 (3H, s, OAc), 4.6 (1H, m, H-3 α), 5.07 (2H, ABq, J = 23, 13 Hz, H₂-Bz), 5.26 (1H, bs, H-4), 7.35 (5H, bs, aromatic H).

ALLYLIC ACETOXYLATION OF 3.—A solution of 3 (10 g, 0.016 mol) in 71 ml CHCl₃ was cooled at -60° and mixed under stirring with 0.64 g (0.008 mol) of Br₂ and a solution of 14.25 g (0.085 mol) AgAc in pyridine. The mixture was stirred until it reached ambient temperature and then left to stand 24 h in the dark. The mixture was treated with dilute HCl to complete precipitation of AgCl, filtered, and washed with H2O. The aqueous layer was extracted with CHCl2, and the CHCl2 phase was shaken with NaHCO2 solution, dried over anhydrous Na₂SO₄, and concentrated to dryness. The residue (9 g) was purified by vacuum chromatography using Si gel. Elution with C₆H₁₄-EtOAc (10:1) yielded 1.59 g of starting compound 3 and 0.88 g of 5, which crystallized out of the column solvent: mp 85-88°; $[\alpha]^{25}D - 31.6^{\circ}$ (c = 0.0155, MeOH) ir $\nu \max cm^{-1}$ 1745, 1690, 1245; ¹H nmr (80 MHz, CDCl₂) δ 0.84 (3H, s, Me-18), 0.90(3H, d, J = 6 Hz, Me-21), 0.98(3H, d, J = 6 Hz, Me-27), 1.18(3H, s, Me-19), 1.98(6H, s, OAc),2.03 (3H, s, OAc), 3.06 (1H, dd, J = 14, 5 Hz, H-26ax), 3.80 (1H, d, J = 14 Hz, H-26eq), 4.75 (1H, m, H-3a), 5.08 (2H, ABq, J = 23, 13 Hz), 5.50 (1H, d, J = 4 Hz, H-6), 5.75 (1H, m, H-4a), 7.3 (5H, bs, aromatic H); ¹³C nmr (20 MHz, CDCl₃) ppm 138.5 (C-5), 131.0 (C-6), 76.9 (C-4), 76.5 (C-16), 72.8 (C-3), 56.4 (C-22), 55.8 (C-17), 54.4 (C-14), 50.0 (C-9), 45.9 (C-26), 42.5 (C-13), 39.5 (C-12), 36.8 (C-1), 36.1 (C-20), 36.0 (C-10), 34.8 (C-15), 31.6 (C-7), 31.1 (C-8), 28.8 (C-25), 27.4 (C-23), 25.4 (C-23), 24), 22.5 (C-2), ,20.2 (C-11 and C-27), 18.9 (C-19), 13.8 (C-21), 12.6 (C-18). Elution with $C_{6}H_{14}$ -EtOAc (4:1) yielded 0.08 g of 6: mp 87–90°; $[\alpha]^{25}D - 20.3$ (c = 0.04 MeOH). Calcd for C₃₀H₅₅NO₇, C 72.07, H 8.53, N 2.16; found C 71.90, H 8.17, N 2.14. Ir v max cm⁻¹ 3456, 1735, 1695, 1245; ¹H nmr (80 MHz, CDCl₃) δ 0.82 (3H, s, Me-18), 0.93 (3H, d, J = 6 Hz, Me-21), 0.98 (3H, d, J = 6 Hz, Me-27), 1.18 (3H, s, Me-19), 2.00 (6H, s, OAc), 2.09 (3H, s, OAc), 3.02 (1H, dd, J = 14, 5 Hz, H-26ax), 3.80 (1H, d, J = 14 Hz, H-26eq), 4.20 (1H, d, J = 4 Hz, H-4 α), 4.70 (1H, m, H-3 α), 5.10 (2H, ABq, J = 22, 12), 5.70 (1H, m, H-6), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1. Increasing the polarity of the solvent gave a 4.5 g mixture of 6 and 7. Finally, 0.78 g of 7, mp 82-85°, was obtained: $[\alpha]^{25}D - 31.4$ (c = 0.27, MeOH); ir ν max cm⁻¹ 3450, 1735, 1694, 1244; ¹H nmr (80 MHz, CDCl₃) δ 0.83 (3H, s, Me-18), 0.94 (3H, d, J = 6 Hz, Me-21), 0.98 (3H, d, J = 6 Hz, Me-27), 1.10 (3H, s, Me-19), 3.02(1H, dd, J = 14, 5 Hz, H-26ax), $3.40(1H, m, H-3\alpha)$, 3.80(1H, d, J = 14 Hz, H-26eq), 5.10(2H, ABq, J = 2, 12, H-Bz), 5.35 $(1H, m, H-4\alpha)$, 5.70 (1H, d, J = 4 Hz, H-6), 7.30 (5H, bs, aromatic)H); ¹³C nmr see Table 1.

HYDROLYSIS OF ALLYLIC ACETOXYLATION PRODUCTS.—To a mixture of **5**, 7, and **6**+7 dissolved in MeOH, a 5% solution of K_2CO_3 was added to slight turbidity and the mixture left at ambient temperature for 6 h. After addition of H₂O the product was extracted with CHCl₃. The organic phase was dried over anhydrous Na₂SO₄ and concentrated to dryness. Crystallization from MeOH afforded 4.7 g of **8**: mp 168–172°; $[\alpha]^{25}D - 11.2$ (c = 0.0187, MeOH). Calcd for $C_{37}H_{53}NO_6$, C 73.11, H 8.79, N 2.30; found C 73.15, H 8.73, N 2.31. Ir ν max cm⁻¹ 3474, 1735, 1695, 1243; ¹H nmr (80 MHz, CDCl₃) δ 0.84 (3H, s, Me-18), 0.90 (3H, d, J = 6 Hz, Me-21), 0.95 (3H, d, J = 6 Hz, Me-27), 1.12 (3H, s, Me-19), 1.97 (3H, s, OAc), 2.99 (1H, dd, J = 14, 5 Hz, H-26ax), 3.40 (1H, m, H-3a), 3.76 (1H, d, J = 14 Hz, H-26eq), 4.05 (1H, d, J = 4 Hz, H-4 α), 5.10 (2H, ABq, J = 23, 13 Hz, H-Bz), 5.65 (1H, m, H-6), 7.28 (5H, bs, aromatic H); ¹³C nmr (20 MHz, CDCl₃) ppm 143.0 (C-5), 127.9 (C-6), 76.6 (C-4 and C-17), 72.4 (C-3), 56.4 (C-22), 55.9 (C-17), 54.5 (C-14), 50.2 (C-9), 45.9 (C-26), 42.6 (C-13), 39.5 (C-12), 37.0 (C-1), 36.0 (C-10), 34.8 (C-15), 31.6 (C-7 and C-8), 28.7 (C-25), 27.4 (C-23), 26.0 (C-2), 25.3 (C-24), 20.8 (C-111 and C-19), 19.9 (C-27), 13.8 (C-21), 12.6 (C-18).

SELECTIVE ACETYLATION OF 8.—To an ice-cold solution of 3.7 g of 8 in 25 ml of pyridine, 20 ml of Ac₂O was added. After 35 min cold H₂O was added, and the mixture was left at ambient temperature for 1 h. The precipitate was filtered, washed with H₂O, and dried overnight in an oven at 45°. The residue was dissolved in toluene and taken to dryness under vacuum, and the products were separated by vacuum chromatography on Si gel. Elution with C₆H₁₄-EtOAc (3:1) yielded 0.79 g of **5**. Further elution with C₆H₁₄-EtOAc (2:1) yielded 2.08 g of **6**.

(22,25*R*)-3β,16β-diacetoxy-22,26-*N*-Cb2-epiminocholestan-5,6-0xido-4-one [9].—To

nd Derivatives.
ar
[2]
solasodine
ihydro
f N-Cbz-d
l Shifts of
C Chemical S
13 C
TABLE 1.

Carbon									ပိ	Compound	р								
	2	3	6	7	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
C-1	37.3	38.1		36.9		34.8		37.3	36.1	37.7	37.9	37.2	36.0	37.4	36.0	36.0	35.9		38.8
C-2	31.6	27.8	21.7	31.8	30.3	33.8	31.5	26.0	25.8	31.3	31.6	25.6	25.7	31.1	28.5	28.5	32.2	32.4	31.0
C-3	71.6	73.8		71.6		198.6	_	74.0	79.3	74.4	75.4	74.0	79.3	74.3	76.2	76.1	74.5		:04.7
C-4	42.3	37.0		79.1		123.0		75.4	72.5	78.4	76.7	75.4	72.5	78.3	205.3	205.0	212.2		77.2
C-3	141.0	139.5		39.0		170.4		49.4	51.5	49.2	50.9	49.1	51.5	49.2	57.4	57.4	56.9		51.5
C-6	121.1	122.2		130.0		32.6		22.9	27.7	22.9	23.0	22.4	22.6	23.0	21.5	21.4	21.5		24.1
C-7	31.6	31.4		31.5		31.7	_	31.2	31.4	29.1	31.0	30.8	31.2	29.3	30.1	29.9	30.2		29.1
C-8	31.5	31.3		31.1		35.1		34.7	34.8	34.7	34.5	34.5	34.5	34.5	34.5	34.7	34.0		34.7
C-9	50.1	50.1		50.2		53.6	_	58.9	53.9	54.0	53.0	54.9	51.5	54.0	53.7	54.2	54.0		53.8
C-10	36.5	36.6		36.0		37.0	_	36.1	36.8	36.2	36.3	36.0	36.8	36.0	42.6	42.8	43.2		36.8
C-11	20.7	20.7		20.2		20.7	_	20.8	20.8	20.8	21.2	21.2	20.7	20.7	20.2	20.1	20.2		21.0
C-12	39.9	39.6		39.5		39.5	_	39.9	39.9	39.9	39.8	39.2	39.7	39.7	39.9	39.6	40.0		39.9
C-13	42.3	42.6		42.5		42.6	_	42.2	42.2	42.3	42.8	42.8	42.8	42.7	42.3	42.3	42.4		43.0
C-14	54.4	54.4	54.5	54.5		53.6		54.2	54.4	54.3	54.3	54.1	54.2	54.3	54.3	53.8	54.3		54.0
C-15	37.3	34.8	34.8	34.7		34.8	_	33.6	33.6	33.6	33.8	34.8	34.7	34.8	33.6	34.4	33.7		33.6
C-16	73.0	76.6	76.5	76.4		76.3	_	79.6	79.6	79.6	76.4	76.5	76.6	76.6	76.6	76.4	79.6		79.6
C-17	57.0	55.9	55.9	55.8		55.8		58.2	58.2	58.2	55.9	55.9	55.9	55.9	58.2	55.9	58.2		58.2
C-18	13.2	12.6	12.6	12.6	12.6	12.7	_	13.0	12.8	13.0	12.8	12.8	12.8	12.8	13.0	12.8	13.0		12.9
C-19	19.3	19.1	20.9	20.2		17.3		13.3	13.5	13.4	13.5	13.3	13.5	13.4	13.6	13.4	13.4		13.7
C-20	35.6	36.0	35.9	35.9		35.7	_	35.9	36.1	36.2	35.9	36.0	36.0	36.0	36.1	36.0	36.0		36.2
C-21	14.2	13.8	13.8	13.8		13.7	_	13.5	13.8	13.7	13.8	13.8	13.8	13.8	13.8	13.8	13.8		13.7
C-22	56.6	56.5	56.4	56.4		56.5	_	56.3	56.4	56.3	56.5	56.5	56.4	56.5	56.3	56.5	56.3		56.2
C-23	27.7	27.4	27.4	27.3		27.4	_	27.9	27.8	27.9	27.8	27.4	27.4	27.4	27.6	27.4	27.6		27.8
C-24	24.9	25.4	25.4	25.3		25.4		25.8	25.8	25.8	25.7	25.4	25.5	25.5	25.8	25.5	25.8		25.8
C-25	28.9	28.8	28.7	28.7		28.7	_	29.0	29.1	29.4	28.7	28.8	28.8	28.8	29.1	28.8	29.0		29.1
C-26	46.1	45.9	45.9	45.8	46.1	45.9	_	46.1	46.0	46.1	45.9	45.9	45.9	45.9	46.1	45.9	46.0		46.1
С-27	19.9	19.9	19.9	19.9	20.3			20.4	20.4	20.4	19.9	20.0	20.0	20.3	20.4	20.1	20.4	20.2	20.4
*Other signals: 67.1 (Bz-CH ₂), 127.9, 128.1, 128.5, 137.0 (Aromatic-C), 157.6 (Bz-CO), Acetate 169.9–170.0 (CO), 20.6–21.1 (Me), Ethoxy group	1 (Bz-C	H ₂), 12	7.9, 1	28.1, 1	28.5,	37.0(Aromai	tic-C),	157.6	(Bz-CC), Acei	ate 16	9.9-17	0.0 (CC	0), 20.(5-21.1	(Me), I	thoxy	group
63.8 (CH ₂ -O), 15.6 (Me)	Ġ.																		

1183

a cold solution of 300 mg of **6** in 50 ml of Me₂CO, 1.0 ml of Jones reagent was added (drop by drop). After 4 h at room temperature, MeOH and H₂O were added, the product was extracted with CHCl₃, and the organic phase was washed with H₂O, dried with anhydrous Na₂SO₄, and evaporated to dryness. The residue showed two spots on tlc which were separated by preparative tlc on Si gel using three developments with C₆H₁₄-EtOAc (2:1). The upper layer yielded 240 mg of **9** as a yellow powder, mp 95–97°. Calcd for C₃₉H₅₃NO₈, C 70.56, H 8.05, N 2.11; found C 70.39, H 8.27, N 2.25. Ir ν max cm⁻¹ 1734, 1695, 1242; ¹H nmr (80 MHz, CDCl₃) δ 0.85 (3H, s, Me-18), 0.88 (3H, d, *J* = 6 Hz, Me-21), 0.94 (3H, d, *J* = 6 Hz, Me-27), 0.98 (3H, s, Me-19), 2.00 (3H, s, OAc), 2.08 (3H, s, OAc), 3.00 (1H, dd, *J* = 14, 5 Hz, H-26ax), 3.30 (1H, d, *J* = 3 Hz, H-6), 3.78 (1H, d, *J* = 14 Hz, H-26eq), 4.35 (1H, m, H-3α), 5.10 (2H, ABq, *J* = 23, 13, H-Bz), 5.29 (1H, m, H-16α), 7.30 (5H, bs, aromatic H); ¹³C nmr (20 MHz, CDCl₃) ppm 204.0 (C-4), 76.2 (C-17), 68.8 (C-3), 67.7 (C-5), 60.6 (C-6), 56.4 (C-22), 55.8 (C-17), 54.1 (C-14), 49.9 (C-9), 46.2 (C-10), 46.0 (C-26), 42.6 (C-13), 39.4 (C-12), 37.0 (C-1), 34.5 (C-15), 33.8 (C-8), 32.5 (C-7), 28.8 (C-2 and C-25), 27.4 (C-23), 25.5 (C-24), 21.1 (C-11), 20.0 (C-27), 17.5 (C-19), 13.7 (C-21), 12.5 (C-18).

(22*S*,25*R*)-3β-HYDROXY-16β-ACETOXY-22,26-N-Cbz-EPIMINO-CHOLESTAN-5,6-OXIDO-4-ONE [**10**].—A solution of 80 mg of **9** in 50 ml MeOH was saturated with a 5% K₂CO₃ solution and left at room temperature 24 h. Extraction with CHCl₃ and usual workup gave 65 mg of **10** which did not crystallize: ir ν max cm⁻¹ 1732, 1272; ¹H nmr (80 MHz, CDCl₃) δ 0.83 (3H, s, Me-18), 0.87 (3H, d, J = 6 Hz, Me-21), 0.93 (3H, d, J = 6 Hz, Me-27), 1.05 (3H, s, Me-19), 2.99 (1H, dd, J = 14, 5, H-26ax), 3.25 (1H, d, J = 4 Hz, H-6), 3.75 (1H, d, J = 14 Hz, H-26eq), 3.90 (1H, m, H-3α), 5.10 (2H, ABq, J = 22, 12, H-Bz), 5.25 (1H, m, H-16α), 7.30 (5H, bs, aromatic H); ¹³C nmr see Table 1.

(22S,25R)-16β-ACETOXY-22,26-N-Cbz-EPIMINOCHOLEST-5-EN-3β-OL [4].—A solution of 6.3 g (0.01 mol) of **3** in 280 ml MeOH was saturated with 18 ml of a 5% K₂CO₃ solution and left at room temperature overnight. Extraction with CHCl₃ and usual workup yielded 5.2 g (0.0088 mol) of **4**, which crystallized from EtOH; mp 176–178; ir ν max cm⁻¹ 3447, 1734, 1699, 1241; ¹H nmr (80 MHz, CDCl₃) δ 0.82 (3H, s, Me-18), 0.91 (3H, d, J = 6 Hz, Me-21), 0.95 (3H, d, J = 6 Hz, Me-27), 0.99 (3H, s, Me-19), 1.99 (3H, s, OAc), 3.00 (1H, dd, J = 14, 5, H-26ax), 3.40 (1H, m, H-3 α), 3.80 (1H, dd, J = 14 Hz, H-26eq), 5.10 (2H, ABq, J = 22, 12 Hz, H-Bz), 5.32 (1H, m, H-6), 7.3 (5H, bs, aromatic H).

(22*S*,25*R*)-16β-ACETOXY-22,26-N-Cbz-EPIMINOCHOLEST-4-EN-3-ONE [**11**].—A mixture of 3.0 g of **4**, 135 ml of toluene, and 27 ml of cyclohexanone was heated to complete solution. Aluminum isopropoxide (1.8 g) was added, and 100 ml of toluene was distilled. H₂O was added and the product extracted with CH₂Cl₂. Chromatography over alumina yielded 1.95 g of **11**: mp 112–115°; [α]²⁵D 39.0 (c = 0.031, MeOH). Calcd for C₃₇H₅₁NO₅, C 75.35, H 8.72, N 2.37; found C 75.10, H 8.59, N 2.35. Ir ν max cm⁻¹ 1732, 1693; ¹H nmr (80 MHz, CDCl₃) δ 0.83 (3H, s, Me-18), 0.90 (3H, d, J = 6 Hz, Me-21), 0.95 (3H, d, J = 6 Hz, Me-27), 1.12 (3H, s, Me-19), 1.97 (3H, s, OAc), 2.95 (1H, dd, J = 14, 5 Hz, H-26ax), 3.75 (1H, d, J = 14 Hz, H-26eq), 5.07 (2H, ABq, J = 22, 12, H-Bz), 5.25 (1H, m, H-16 α), 5.64 (1H, bs, H-4), 7.30 (5H, bs, aromatic H); ¹³C nmr see Table 1.

HYDROBORATION OF 11.—The BF₃-etherate complex and THF were distilled under N₂, and the diglyme was purified (22) just before use. A solution of 1.5 g of 11 in 20 ml dry THF was put in contact with a stream of N_2 containing B_2H_6 generated separately according to Zweifel and Herbert (11); 27 ml of 1.0 M NaBH₄ in diglyme was added drop by drop to a solution of BF₃ complex (6.9 ml) in diglyme (6 ml). After the addition of NaBH₄ was complete, the generator was heated to 70° to complete the transference of B_2H_6 . The organo-borane complex was treated with 20 ml 3 N NaOH and 20 ml of 30% H_2O_2 under stirring. The mixture was extracted with Et2O. The organic phase was saturated with NaCl and extracted twice with 25 ml of Et_2O . The Et_2O layer was dried over anhydrous MgSO₄ and concentrated under vacuum. The residue (1.3 g) showed two substances on tlc with R_f 0.27 and 0.16. Separation was accomplished on Si gel using vacuum chromatography. C_6H_6 -EtOAc (5:1) eluted **12** (510 mg): mp 144–146°; [α]²⁵D 16.4 (c = 0.011, MeOH). Calcd for C₃₇H₅₇NO₅, C 74.58, H 9.64, N 2.35; found C 74.43, H 9.62, N 2.36. Ir ν max cm⁻¹ 3519, 1696, 1262, 1080; ¹H nmr (80 MHz, CDCl₃) δ 0.78 (3H, s, Me-18), 0.83 (3H, s, Me-19), 1.03 (3H, d, J = 6 Hz, Me-21), 1.14 (3H, d, J = 6 Hz, Me-27), 3.02 (1H, dd, J = 14, 5 Hz, H-26ax), 3.40 (1H, m, H-3 α), 3.50 (1H, m, H-4 α), 3.85 (1H, d, J = 14 Hz, H-26eq), 3.95 (1H, m, H-16), 5.10 (2H, ABq, J = 22, 12, H-Bz), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1. Increasing the polarity of the solvent to C_6H_6 -EtOAc (2:1) yielded 435 mg of **16**: mp 103–104°; $[\alpha]^{25}D$ 27.0 (c = 0.0133, MeOH). Calcd for C₃₇H₅₅NO₆·MeOH, C 71.10, H 9.27, N 2.18; found C 70.86, H 8.91, N 2.19. Ir ν max cm⁻¹ 3447, 1734, 1690, 1266, 1247, 1064; ¹H nmr (80 MHz, CDCl₃) δ 0.76 (3H, s, Me-18), 0.82 (3H, s, Me-19), 0.89 (3H, d, J = 6 Hz, Me-21), 0.98 (3H, d, J = 6 Hz, Me-27), $3.04 (1H, dd, J = 14, 5 Hz, H-26ax), 3.35 (1H, m, H-3\alpha), 3.50 (1H, m, H-4\alpha), 3.80 (1H, d, J = 14)$ Hz, H-26eq), 5.10 (2H, ABq, J = 22, 12 Hz, H-Bz), 5.25 (1H, m, H-16 α), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1.

SELECTIVE ACETYLATION OF 12.—A solution containing 400 mg of 12 in 3.0 ml of pyridine at 2° was reacted with Ac_2O for 15 min. Cold H_2O was added, and the precipitate was washed with H_2O , dried at 45°, dissolved in toluene, and taken to dryness under vacuum. A mixture (360 mg) of three products was obtained which was separated using vacuum chromatography over Si gel. C_6H_{14} -EtOAc (10:1) eluted 13 as a gum: $[\alpha]^{25}$ D 20.7 (c = 0.015, MeOH). Calcd for C₄₁H₆₁NO₇, C 72.44, H 9.04, N 2.06; found C 72.17, H 9.29, N 2.18. Ir v max cm⁻¹ 1742, 1697, 1250; ¹H nmr (80 MHz, CDCl₃) § 0.76 (3H, s, Me-18), 0.84 (3H, s, Me-19), 0.98 (3H, d, J = 6 Hz, Me-21), 1.15 (3H, d, J = 6 Hz, Me-27), 1.98 (3H, s, OAc), 3.05 (1H, dd, J = 14, 5 Hz, H-26ax), 3.78 (1H, d, J = 14 Hz, H-26eq), 3.97 (1H, m, H-16a), 4.79 (1H, m, H-4α), 4.90 (1H, m, H-3α), 5.09 (2H, ABq, J = 22, 12, H-Bz), 7.3 (5H, bs, aromatic H); 13 C nmr see Table 1. Increasing the polarity of the solvent yielded 14 (120 mg, $R_f 0.66$) as a gum. Calcd for C39H59NO6, C73.43, H 9.32, N 2.20; found C 73.65, H 9.20, N 2.07. Ir v max cm⁻¹ 3452, 1734, 1697, 1250; ¹H nmr (80 MHz, CDCl₄) & 0.75 (3H, s, Me-18), 0.84 (3H, s, Me-19), 1.02 (3H, d, J = 6 Hz, Me-21), 1.18 (3H, d, J=6 Hz, Me-27), 2.00 (3H, s, OAc), 3.05 (1H, dd, J=14, 5, H-26ax), 3.50 $(1H, m, H-4\alpha), 3.80 (1H, d, J = 14 Hz, H-26eq), 3.95 (1H, m, H-16\alpha), 4.70 (1H, m, H-3\alpha), 5.10$ (2H, ABq, J = 23, 13, H-Bz), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1. Finally, 15 was obtained, which could not be induced to crystallize. Calcd for C39H50NO6, C 73.46, H 9.33, N 2.20; found C 73.55, H 9.47, N 2.15. Ir ν max cm⁻¹ 3450, 1734, 1695, 1248; ¹H nmr (80 MHz, CDCl₃) δ 0.75 (3H, s, Me-18), 0.83 (3H, s, Me-19), 1.01 (3H, d, J=6 Hz, Me-21), 1.19 (3H, d, J=6 Hz, Me-27), 2.05 $(3H, s, OAc), 3.05 (1H, dd, J = 14, 5, H-26ax), 3.40 (1H, m, H-3\alpha), 3.75 (1H, d, J = 14 Hz, H-26eq),$ 3.95 (1H, m, H-16 α), 4.70 (1H, m, H-4 α), 5.10 (2H, ABq, J = 23, 13 Hz, H-Bz), 7.30 (5H, bs, aromatic H); ¹³C nmr see Table 1.

SELECTIVE ACETYLATION OF 16.—Acetylation was performed in a manner similar to the acetylation of 12. The mixture of acetates was separated by vacuum chromatography on Si gel using C_6H_{14} /EtOAc. Compound 17 eluted first, $[\alpha]^{25}$ D 13.6 (c = 0.006, MeOH). Calcd for C₄₁H₅₉NO₈, C 70.97, H 8.57, N 2.02; found C 70.85, H 8.40, N 1.90. Ir ν max cm⁻¹ 1734, 1695, 1250; ¹H nmr (80 MHz, CDCl₃)δ 0.76 (3H, s, Me-18), 0.86 (3H, s, Me-19), 0.89 (3H, d, J = 6 Hz, Me-21), 0.98 (3H, d, J = 6 Hz, Me-27), 1.95 (3H, s, OAc), 2.00 (3H, s, OAc), 3.00 (1H, dd, J = 14, 5 Hz, H-26ax), 3.76 (1H, d, J = 14 Hz, H-26eq), $4.70(1H, m, H-3\alpha)$, $4.85(1H, m, H-4\alpha)$, 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-16), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1. Increasing the polarity of the solvent eluted 18. Calcd for C30H37NO7, C 71.86, H 8.81, N 2.15; found C 71.64, H 8.72, N 2.04. Ir v max cm⁻¹ 1735, 1694, 1245; ¹H nmr (80 MHz, CDCl₃) δ 0.76 (3H, s, Me-18), 0.80 (3H, s, Me-19), 0.90 (3H, d, J = 6 Hz, Me-21), 0.93 (3H, d, J = 6 Hz, Me-27), 1.95 (3H, s, O-Ac), 2.05 (3H, s, O-Ac), 3.00 $(1H, dd, J = 14, 5 Hz, H-26ax), 3.42 (1H, m, H-4\alpha), 3.78 (1H, d, J = 14 Hz, H-26eq), 4.6 (1H, m, H-4\alpha), 3.8 (1H, d, J = 14 Hz, H-26eq), 4.6 (1H, m, H-4\alpha), 3.8 (1H, d, J = 14 Hz, H-26eq), 4.6 (1H, d, J$ 3 α), 5. 10 (2H, ABq, J = 23, 13 Hz, H-Bz), 5.25 (1H, m, H-16 α), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1. Finally **19** was eluted: ir ν max cm⁻¹ 3447, 1737, 1695, 1242; ¹H nmr (80 MHz, CDCl₃) δ 0.75 (3H, s, Me-18), 0.85 (3H, s, Me-19), 0.90 (3H, d, J = 6 Hz, Me-21), 0.95 (3H, d, J = 6 Hz, Me-27), 1.99 (3H, s, OAc), 2.06 (3H, s, OAc), 2.98 (1H, dd, J = 14, 5 Hz, H-26ax), 3.37 (1H, m, H-3a), 3.75 $(1H, d, J = 14 Hz, H-26eq), 4.80(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, 13 Hz, H-Bz), 5.25(1H, m, H-4\alpha), 5.10(2H, ABq, J = 23, Hz)$ H-16a), 7.3 (5H, aromatic H); ¹³C nmr see Table 1.

(22*S*,25*R*)-3β-ACETOXY-16β-ETHOXY-22,26-N-Cb2-EPIMINO-5α-CHOLESTAN-4-ONE [**20**].— To a cold solution of **14** (80 mg) in Me₂CO, Jones reagent was added drop by drop to slight excess. The reaction mixture was left at room temperature for 1 h. After addition of MeOH and H₂O, the mixture was extracted with CHCl₃. The organic phase was dried over anhydrous Na₂SO₄ and taken to dryness under vacuum. Purification by vacuum chromatography over Si gel yielded 52 mg of **20**: mp 110–112°; [α]²⁵D 0.6 (c = 0.017, MeOH). Calcd for C₃₉H₅₇NO₆, C 73.66, H 9.04, N 2.20; found C 73.49, H 9.08, N 2.35. Ir ν max cm⁻¹ 1749, 1733, 1696, 1236; ¹H nmr (80 MHz, CDCl₃) δ 0.72 (3H, s, Me-18), 0.78 (3H, s, Me-19), 0.88 (3H, d, J = 6 Hz, Me-21), 1.01 (3H, d, J = 6 Hz, Me-27), 2.05 (3H, s, OAc), 3.01 (1H, dd, J = 14, 5 Hz, H-26ax), 3.75 (1H, d, J = 14 Hz, H-26eq), 3.95 (1H, m, H-16α), 4.95 (1H, m, H-3α), 5.10 (2H, ABq, J = 23, 13 Hz, H-Bz), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1.

(22*S*,25*R*)-4β-ACETOXY-16β-ETHOXY-22,26-N-Cbz-EPIMINO-5-CHOLESTAN-3-ONE [24].— Compound 15 (50 mg) was oxidized with Jones reagent in a similar manner to that described for 14 to yield 35 mg of 24: ir ν max cm⁻¹ 1749, 1733, 1696, 1238; ¹H nmr (80 MHz, CDCl₃) δ 0.72 (3H, s, Me-18), 0.76 (3H, s, Me-19), 0.90 (3H, d, J = 7 Hz), 1.03 (3H, d, J = 7 Hz), 2.09 (3H, s, OAc), 3.04 (1H, dd, J = 14, 5 Hz, H-26ax), 3.76 (1H, d, J = 14 Hz, H-26eq), 3.95 (1H, m, H-16 α), 5.05 (1H, m, H-4 α), 5.10 (2H, ABq, J = 23, 13 Hz, H-Bz), 7.30 (5H, bs, aromatic H); ¹³C nmr see Table 1.

(225,25*R*)-3β,16β-DIACETOXY-22,26-N-Cbz-EPIMINO-5α-CHOLESTAN-4-ONE [21].—A cold Me₂CO solution of 18 (60 mg) was treated with Jones reagent, yielding, after vacuum chromatography, 47 mg of 21: mp 72–75°, [α]²⁵D 1.5 (c=0.0135), MeOH); ir ν max cm⁻¹ 1733, 1693, 1240; ¹H nmr (80 MHz, CDCl₃) δ 0.72 (3H, s, Me-18), 0.78 (3H, s, Me-19), 0.91 (3H, d, J = 7 Hz, Me-21), 0.96

(3H, d, J = 7 Hz, Me-27), 1.96 (3H, s, OAc), 2.12 (3H, s, OAc), 2.99 (1H, dd, J = 14, 5 Hz, H-26ax), 3.75 (1H, d, J = 14 Hz, H-26eq), 5.10 (2H, ABq, J = 23, 13 Hz, H-Bz), 5.23 (1H, m, H-16 α), 7.30 (5H, bs, aromatic H); ¹³C nmr see Table 1.

(225,25*R*)-3β-HYDROXY-16β-ETHOXY-(22,26)-*N*-Cbz-EPIMINO-5α-CHOLESTAN-4-ONE [**22**].— To a solution of 30 mg of **20** in MeOH, a few drops of 5% aqueous K₂CO₃ was added, and the mixture was left overnight at room temperature. TIc [Si gel plate, C₆H₁₄-EtOAc (1:1)] showed that the 3β-O-acetate **20**, R_f 0.85, had disappeared and that a new spot with R_f 0.22 was present. The solution was made alkaline and extracted with CHCl₃. The organic layer was dried over anhydrous Na₂SO₄ and the solvent evaporated to dryness. The residue was crystallized from MeOH yielding 22 mg of **22**: mp 138–142°. Calcd for C₃₇H₅₅NO₅, C 74.83, H 9.34, N 2.36; found C 75.12, H 9.47, N 2.28. Ir ν max cm⁻¹ 1710, 1694; ¹H nmr (80 MHz, CDCl₃) δ 0.73 (3H, s, Me-18), 0.70 (3H, s, Me-19), 0.87 (3H, d, J = 6 Hz, Me-21), 1.00 (3H, d, J = 6 Hz, Me-27), 3.01 (1H, dd, J = 14, 5 Hz, H-26ax), 3.75 (1H, d, J = 14 Hz, H-26eq), 3.95 (1H, m, H-16α), 4.10 (1H, t, J = 10 Hz, H-3α), 5.10 (2H, ABq, J = 22, 12 Hz, H-Bz), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1.

(22*S*,25*R*)-3β-HYDROXY-16β-ACETOXY-22,26-*N*-Cbz-5α-EPIMINO-CHOLESTAN-4-ONE **[23]**.— In a similar manner, 30 mg of **21** was hydrolyzed to yield 23 mg of **23**: mp 151–155°, R_f 0.15 on a Si gel plate [solvent C₆H₁₄-EtOAc (1:1)]. Calcd for C₃₇H₅₃NO₆, C 73.11, H 8.79, N 2.30; found C 73.28, H 8.91, N 2.23. Ir ν max cm⁻¹ 1735, 1710, 1695, 1245; ¹H nmr (80 MHz, CDCl₃) δ 0.72 (3H, s, Me-18), 0.69 (3H, s, m Me-19), 0.91 (3H, d, J = 6 Hz, Me-21), 0.97 (3H, d, J = 6 Hz, Me-27), 2.10 (3H, s OAc), 3.00 (1H, dd, J = 14, 5 Hz, H-26ax), 3.75 (1H, d, J = 14 Hz, H-26eq), 4.12 (1H, t, J = 10 Hz, H-3α), 5.10 (2H, ABq, J = 22, 12 Hz, H-Bz), 5.24 (1H, m, H-16α), 7.3 (5H, bs, aromatic H); ¹³C nmr see Table 1.

ACKNOWLEDGMENTS

The authors acknowledge the support of CONICIT, Grant S1-1860, and Consejo de Desarrollo Cientifico, Humanistico y Tecnologico (ULA), Grant Fa-70-86. They also thank Oss-Diosynth, Holland, for a gift of solasodine hydrochloride.

LITERATURE CITED

- 1. C. Benitz de Rojas, Revista Facultad de Agronomía (Maracay), 7 (3), 25 (1974).
- 2. A. Usubillaga, A. Paredes, P. Martinod, and J. Hidalgo, Planta Med., 23, 286 (1973).
- 3. E. Yibirin, G. Ayala, S. Cedillo-Vaz, and A. Usubillaga, Fitoterapia, LXI, 127 (1990).
- 4. A. Usubillaga, C. Seelkopf, I. Karle, J. Dale, and B. Witkop, J. Am. Chem. Soc., 92, 700 (1970).
- 5. A. Usubillaga, J. Nat. Prod., 47, 52 (1984).
- 6. O. Rosenheim and W.W. Starling, J. Chem. Soc., 337 (1937).
- 7. L.F. Fieser and R. Stevenson, J. Am. Chem. Soc., 76, 1728 (1954).
- 8. J.R. Hanson and P.B. Reese, J. Chem. Soc., Perkin Trans. 1, 647 (1985).
- 9. C. Kusano, N. Aimi, and Y. Sato, J. Org. Chem., 35, 2624 (1970).
- 10. G. Blunden, J.A. Jaffer, K. Jewers, and W.J Griffin, J. Nat. Prod., 44, 441 (1981).
- 11. G. Zweifel and C. Herbert, in: "Organic Reactions." Ed. by A. Cope, John Wiley and Sons, New York, 1963, Vol. 13, pp. 1-54.
- 12. H.C. Brown and B.C. Subba Rao, J. Am. Chem. Soc., 82, 681 (1960).
- 13. A. Usubillaga, Phytochemistry, 27, 3024 (1988).
- 14. M. Bergmann and L. Zervas, Ber., 65, 1192 (1932).
- 15. D. Ben-Ishai and A. Bergher, J. Org. Chem., 17, 1564 (1952).
- 16. T. Tsuji, T. Kataoka, M. Yoshioda, Y. Sendo, Y. Nishitani, S. Hirai, T. Maeda, and W. Nagata, *Tetrabedron*, **30**, 2793 (1979).
- 17. L.A. Carpino, J. Am. Chem. Soc., 79, 98 (1957).
- 18. G.L. Stahl, R. Walter, and C.W. Smith, J. Org. Chem., 43, 2285 (1978).
- 19. F.E. Roberts, Tetrahedron Lett., 4, 325 (1979).
- 20. K. Schreiber, A. Walther, and H. Roensch, Tetrahedron, 20, 1939 (1964).
- H.E. Carter, R.L. Frank, and H.W. Johnston, in: "Organic Synthesis." Ed. by E.C. Horning, John Wiley and Sons, New York, 1955, Collective Vol. 3, pp. 167–169.
- 22. H.C. Brown, E.J. Mead, and B.C. Subba Rao, J. Am. Chem. Soc., 77, 6209 (1955).

Received 23 December 1991