# On the Synthesis of 4-Keto-Steroidal Alkaloids <br> Elizabeth Viloria, Gina Meccia, and Alfredo N. Usubillaga <br> J. Nat. Prod., 1992, 55 (9), 1178-1185• DOI: <br> 10.1021/np50087a003 • Publication Date (Web): 01 July 2004 <br> Downloaded from http://pubs.acs.org on April 4, 2009 

## More About This Article

The permalink http://dx.doi.org/10.1021/np50087a003 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article


# ON THE SYNTHESIS OF 4-KETO-STEROIDAL ALKALOIDS 

Elizabeth Viloria, Gina Meccia, and Alfredo N. Usubillaga*<br>Instituto de Investigación, Facultad de Farmacia, Universidad de Los Andes, Mérida, Venezuela


#### Abstract

To obtain 4-keto-steroidal alkaloids from solasodine, two routes were tried: allylic acetoxylation of ( $22 S, 25 R$ )-22,26- N -Cbz-epiminocholest-5-ene-3B,16B-diol-acetate [3]; and hydroboration of (22S,25R)-16 $\beta$-aceryl-22,26-N-Cbz-epiminocholest-4-en-3-one [11]. The first route yielded ( $22 S, 25 R$ )-3 $\beta$-hydroxy-16 $\beta$-acetoxy- $22,26-N$-Cbz-epiminocho-lestan- 5,6 -oxido- 4 -one [10]. The second one yielded two products: ( $22 S, 25 R$ )-3 3 -hydroxy$16 \beta$-ethoxy-22,26-N-Cbz-epimino-5 $\alpha$-cholestan- 4 -one [22] and its $16 \beta$-acetoxy homologue [23].


Steroidal alkaloids with a 3-hydroxy-4-keto moiety on ring A have been found in two species of Solanaceae, Solanum oblongifolium Bitter (1) and Solanum ecuadorensis Bitter (2). The interesting pharmacological properties of these alkaloids (3) led us to consider the convenience of obtaining them by synthesis. As a first approach to the problem, the introduction of a 4 -keto group in the steroid nucleous was tried. Solasodine was used as starting material because it was available and is easily transformed into an epiminocholestane type alkaloid with a lateral chain where the nitrogen atom is $\alpha$ oriented, as in solaphyllidine (4) and related alkaloids (5).

Allylic oxydation of cholesteryl acetate using $\mathrm{SeO}_{2}$ has been reported by Rosenheim and Starling (6) with rather low yields. On the other hand $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation of cholest-5-en-3-one (7) introduces a 4-equatorial hydroxyl group which is difficult to oxidize. Therefore, it was considered convenient to try allylic acetoxylation (8) to introduce a 4-axial hydroxyl.

Reduction of solasodine with $\mathrm{NaBH}_{4}$ (9) produced (22S,25R)-22,26-epiminocholest-5-ene-3 $\beta$-16 with benzyl chloroformate ( Cbz ). It is interesting to note that the aromatic ring of the Cbz moiety interacts with the $\mathrm{H}-26 \mathrm{eq}$, deshielding it strongly, causing this proton to appear at $\delta 3.80$ in the ${ }^{1} \mathrm{H}$-nmr spectrum. The $\mathrm{H}-26 \mathrm{eq}$ is coupled to the $\mathrm{H}-26 \mathrm{ax}$ ( $J=14 \mathrm{~Hz}$ ), and the latter is also coupled to the $\mathrm{H}-25 \mathrm{ax}(J=5 \mathrm{~Hz}$ ). Finally, the H$25 a x$ is coupled to the C-27 methyl. Decoupling experiments established these relationships, and a similar situation is present in certain sapogenins (10).

To obtain a compound amenable to allylic acetoxylation, the $N$-CBz derivative [2] was treated with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ to yield the 3,16-diacetoxy derivative [3]. Treatment with $\mathrm{Br}_{2}$ and silver acetate in $\mathrm{CHCl}_{3}$ at low temperature produced a mixture of starting material 3 and three products: $(22 S, 25 R)$ - $N$-Cbz-22,26-epiminocholest- 5 -ene- $3 \beta, 4 \beta, 16 \beta$ -triol-acetate [5], $(22 S, 25 R)-3 \beta, 16 \beta$-di- 0 -acetyl-22,26- $N$-Cbz-epiminocholest-5-en$4 \beta$-ol $\{6\}$, and its $4 \beta, 16 \beta$-di- $O$-acetyl- $3 \beta$-ol isomer 7 . Unfortunately the desired product 6 was obtained in lowest yield; therefore 5,7 , and a mixture of $\mathbf{6}$ and 7 were subjected to mild hydrolysis with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH , conditions that do not affect the acetate on C -16. The $3 \beta, 4 \beta$-diol 8 was obtained almost quantitatively. Selective acetylation of 8 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ at $0^{\circ}$ gave 6 in $54 \%$ yield. Mild oxidation of 6 with Jones reagent yielded 9, which, upon treatment with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ at room temperature, gave 10.

Even though 10 is an interesting compound, the desired product was an alkaloid with a $3 \beta-\mathrm{OH}, 4$-keto moiety with no neighboring epoxy group. Therefore, a new scheme was tried to obtain a compound devoid of the $\Delta 5$ double bond. To obtain such a compound, 3 was treated with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, and the product 4 of hydrolysis was subjected to Oppenauer oxidation to yield 11, which is a suitable compound to intro-


$9 R=A c$
11
$10 \mathrm{R}=\mathrm{H}$
duce a hydroxyl at $\mathrm{C}-4$ by hydroboration. The hydroboration reaction, which was performed according to Zweifel and Herbert (11), rendered two products in about equal proportions. The less polar product 12, $R_{f} 0.27$, showed an ethoxy group at $\mathrm{C}-16$, while the other product $16, R_{f} 0.16$, had an 0 -acetyl. The formation of 12 was probably caused by an excess of diborane, as reduction of carbonyls under these conditions has been reported in the literature (12).

In order to oxidize the hydroxyl at $\mathrm{C}-4$ without affecting the one at $\mathrm{C}-3$, selective acetylation of 12 and 16 was conducted as previously described for 8 . In each case three acetylated derivatives were obtained: 13,14 and 15 from 12 , and 17,18 , and 19 from 16. Mild oxidation of 14 with Jones reagent yielded the $3-0$-acetyl-4-keto derivative 20. The ${ }^{13} \mathrm{C}$-nmr spectrum of $\mathbf{2 0}$ showed the signal of $\mathrm{C}-3$ at 76.2 ppm , that of $\mathrm{C}-5$ at 57.4 ppm , and the carbonyl (C-4) at 205.3 ppm , which agrees with values reported for solaphyllidine acetate (13). In a similar manner, 21 was obtained by mild oxidation of 18.

For comparison, 15 was treated with Jones reagent, yielding 24 . In this compound $\mathrm{C}-4$ appears at 77.2 ppm and $\mathrm{C}-5$ at 51.5 ppm . Treatment of $\mathbf{2 0}$ and 21 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ / MeOH produced the corresponding 3-OH, 4-keto derivatives 22 and 23. These compounds show the C-4 carbonyl at 212.4 ppm as observed in solaphyllidine.

Because catalytic reduction could not be used to cleave the Cbz group (14), because it would reduce the carbonyl, acid hydrolysis with $\mathrm{HBr} / \mathrm{HOAc}$ (15) was tried unsuccessfully. On the other hand, removal of the Cbz group using a strong Lewis acid such as $\mathrm{AlCl}_{3}$ (16) proved equally inadequate. This demonstrated the convenience of using a protecting group like $t$-butyloxycarbonyl (BOC) (17), which can be removed by acid hydrolysis (18), or thiothiazolone (19).

The overall yield for compound $\mathbf{1 0}$ was approximately $7 \%$, while the yield of $\mathbf{2 3}$ from solasodine was about $4 \%$. The yield of the latter could be doubled if partial reduction of the $16-0$-acetare during hydroboration is avoided; this could be accomplished if this group is hydrolyzed prior to hydroboration.

$12 \quad R_{1}=R_{2}=H$
$16 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$13 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$14 \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{H}$
$15 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ac}$
$17 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$18 \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{H}$
$19 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ac}$

$20 \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{\mathbf{2}}=\mathrm{Et}$
24
$21 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$22 \mathbf{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Et}$
$23 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ac}$

## EXPERIMENTAL

General experimental procedures.-Tlc was performed on Si gel plates, using $\mathrm{C}_{6} \mathrm{H}_{14}$ ErOAc (2:1) as a solvent unless ocherwise stated, and spots were visualized with $\mathrm{I}_{2}$ vapor. Melting points were determined on a Fisher-Johns hot stage and are uncorrected. Optical rotations were measured in a Schmidt-Haensch polarimeter. The ir spectra were recorded using a Perkin-Elmer spectrometer model $\mathbf{F x}$ 1720 as KBr disks. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were determined in $\mathrm{CDCl}_{3}$ with TMS as internal standard, and chemical shifts are expressed in ppm; a Varian Ft -80 apparatus was used, and standard proton noise-decoupled and attached proton test (APT) spectra were recorded for all compounds. Microanalyses were conducted at Prof. Melissa \& G. Reuter's Analytical Laboratories, D-5270 Gummersbach, Germany. Solasodine dihydrochloride was obtained from Oss-Diosynth (Holland).
( $22 S, 25 R$ )-22,26-epiminocholest-5-ene-3 $3,16 \beta$-diol [1].-To an ice-cold solution of 60 g ( 0.145 mol ) of solasodine in 3.5 liters of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 22 \mathrm{~g}(0.58 \mathrm{~mol})$ of $\mathrm{NaBH}_{4}$ was added slowly with stirring. After 2 h , ice- $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted twice with $\mathrm{CHCl}_{3}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to dryness. The crude product was crystallized from MeOH to give 53.1 g ( $88 \%$ ) of dihydrosolasodine: mp 259-262 ${ }^{\circ}$, [lit. (20) 265$266^{\circ}$; ir $\nu \max \mathrm{cm}^{-1} 3410,3190,1170,1080$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, 27-$ Me ) 0.94 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), 1.03 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 1.08 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 2.95 ( $1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}$, $\mathrm{H}-26), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 4.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 5.30(1 \mathrm{H}, \mathrm{bd}, J=4 \mathrm{~Hz}, \mathrm{H}-6)$.
( $22 S, 25 R$ )-N-CBZ-22, 26-EPIMINOCHOLEST-5-ENe-3B, 16B-diol [2].-A solution of $45 \mathrm{~g}(0.108$ mol) of 1 in 1.3 liters of $\mathrm{CHCl}_{3}$ was mixed with 647 ml of $5 \% \mathrm{NaHCO}_{3}$ and $34 \mathrm{~g}(0.22 \mathrm{~mol})$ of benzyl chloroformate (Cbz-Cl) in toluene, prepared according to Carter et al. (21). After shaking for 9.5 h an additional amount ( 11 g ) of CbzCl was added and left overnight at room temperature. The $\mathrm{CHCl}_{3}$ phase was shaken several times with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. The residue was chromatographed on a Si gel column. Elution with $\mathrm{C}_{6} \mathrm{H}_{6}$ - $\mathrm{ErOAc}(10: 1$ ) yielded $34.75 \mathrm{~g}(58.4 \%$ ) of 2, which crystallized from ErOH-Me ${ }_{2} \mathrm{CO}(1: 1)$ : $\mathrm{mp} 170-171^{\circ} ;[\alpha]^{25} \mathrm{D}-14.5$ ( $c=0.31, \mathrm{MeOH}$ ). Calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{NO}_{4}, \mathrm{C} 76.46, \mathrm{H} 9.35, \mathrm{~N} 2.55$; found C 76.09, H 9.11, N 2.44. Ir $\nu \max 3440,1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$
$\mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 1.00$ ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), $3.01(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{Gax}), 3.80(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.12$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha$ ) , $5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 7.34(5 \mathrm{H}$, bs, aromatic H$)$.
( $22 S, 25 R$ )-N-Cbz-22,26-EPIMINOCHOLEST-S-ENE-3 $\beta$, $16 \beta$-dIOL-ACETATE [3].-To a solution of 30 g of $\mathbf{2}$ in pyridine, 150 ml of $\mathrm{Ac}_{2} \mathrm{O}$ was added. After 3 days at room temperature cold $\mathrm{H}_{2} \mathrm{O}$ was added, and the precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and crystallized from MeOH , yielding 34 g of diacetate: $m p 110-112^{\circ}$; ir $\nu \max 1732,1686,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), $0.90(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.96(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.6(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.07\left(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}_{2}-\mathrm{Bz}\right), 5.26(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4)$, 7.35 ( 5 H , bs, aromatic H).

Allylic acetoxylation of 3.-A solution of $3(10 \mathrm{~g}, 0.016 \mathrm{~mol})$ in $71 \mathrm{ml} \mathrm{CHCl}{ }_{3}$ was cooled at $-60^{\circ}$ and mixed under stirring with $0.64 \mathrm{~g}(0.008 \mathrm{~mol})$ of $\mathrm{Br}_{2}$ and a solution of $14.25 \mathrm{~g}(0.085 \mathrm{~mol}) \mathrm{AgAc}$ in pyridine. The mixture was stirred until it reached ambient temperature and then left to stand 24 h in the dark. The mixture was treated with dilute HCl to complete precipitation of AgCl , filtered, and washed with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}$, and the $\mathrm{CHCl}_{3}$ phase was shaken with $\mathrm{NaHCO}_{3}$ solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. The residue ( 9 g ) was purified by vacuum chromatography using Si gel. Elution with $\mathrm{C}_{6} \mathrm{H}_{14}$ - ErOAc ( $10: 1$ ) yielded 1.59 g of starting compound 3 and 0.88 g of 5 , which crystallized out of the column solvent: $\mathrm{mp} 85-88^{\circ} ;[\alpha]^{25} \mathrm{D}-31.6^{\circ}$ $(c=0.0155, \mathrm{MeOH})$ ir $\nu \operatorname{max~cm}{ }^{-1} 1745,1690,1245 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18)$, $0.90(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.98(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 1.98(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.06(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.80(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.75(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \alpha), 5.08(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-6), 5.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 7.3(5 \mathrm{H}$, bs, aromatic H); ${ }^{13} \mathrm{C}$ nmr $\left(20 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 138.5(\mathrm{C}-5), 131.0(\mathrm{C}-6), 76.9(\mathrm{C}-4), 76.5(\mathrm{C}-16), 72.8$ (C-3), 56.4 (C-22), 55.8 (C-17), 54.4 (C-14), 50.0 (C-9), 45.9 (C-26), 42.5 (C-13), 39.5 (C-12), 36.8 (C-1), 36.1 (C-20), 36.0 (C-10), 34.8 (C-15), 31.6 (C-7), 31.1 (C-8), 28.8 (C-25), 27.4 (C-23), 25.4 (C24), 22.5 (C-2), , 20.2 (C-11 and C-27), 18.9 (C-19), 13.8 (C-21), 12.6 (C-18). Elution with $\mathrm{C}_{6} \mathrm{H}_{14}{ }^{-}$ ErOAc (4:1) yielded 0.08 g of $6: \mathrm{mp} 87-90^{\circ} ;[\alpha]^{25} \mathrm{D}-20.3(c=0.04 \mathrm{MeOH})$. Calcd for $\mathrm{C}_{39} \mathrm{H}_{5} \mathrm{NO}_{7}, \mathrm{C}$ 72.07, H 8.53, N 2.16; found C 71.90, H 8.17, N 2.14. Ir $v \max \mathrm{~cm}^{-1} 3456,1735,1695,1245 ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.93(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.98(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, Me-27), 1.18 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 2.00 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ), 2.09 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ), 3.02 ( $1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-$ $26 \mathrm{ax}), 3.80(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.20(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-4 \alpha), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.10$ $(2 \mathrm{H}, \mathrm{ABq}, J=22,12), 5.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 7.3(5 \mathrm{H}, \mathrm{bs}$, aromatic H$) ;{ }^{15} \mathrm{C} \mathrm{nmr} \mathrm{see} \mathrm{Table} 1$. Increasing the polarity of the solvent gave a 4.5 g mixture of 6 and 7 . Finally, 0.78 g of 7 , mp 82-85 , was obtained: $[\alpha]^{25} \mathrm{D}-31.4(c=0.27, \mathrm{MeOH})$; ir $v \max _{\mathrm{cm}}{ }^{-1} 3450,1735,1694,1244 ;{ }^{1} \mathrm{H} \operatorname{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.94(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.98(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 19), 3.02 ( $1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}$ ), $3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.80(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 5.10$ $(2 \mathrm{H}, \mathrm{ABq}, J=2,12, \mathrm{H}-\mathrm{Bz}), 5.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 5.70(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-6), 7.30(5 \mathrm{H}$, bs, aromatic $\mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr see Table 1 .

Hydrolysis of allylic acetoxylation products. -To a mixture of 5, 7, and $6+7$ dissolved in MeOH , a $5 \%$ solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to slight turbidity and the mixture left at ambient temperature for 6 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ the product was extracted with $\mathrm{CHCl}_{3}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. Crystallization from MeOH afforded 4.7 g of 8 : mp 168-172 ${ }^{\circ} ;[\alpha]^{25} \mathrm{D}-11.2$ ( $c=0.0187$, MeOH). Calcd for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{NO}_{6}, \mathrm{C} 73.11, \mathrm{H} 8.79, \mathrm{~N} 2.30$; found C 73.15, H 8.73, N 2.31. Ir $v \operatorname{max~cm}{ }^{-1} 3474,1735,1695,1243 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.90(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.95(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 19), $1.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.76(1 \mathrm{H}, \mathrm{d}, J=14$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{eq}), 4.05(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-4 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, $7.28(5 \mathrm{H}$, bs, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(20 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ppm $143.0(\mathrm{C}-5), 127.9(\mathrm{C}-6), 76.6(\mathrm{C}-4$ and C 17), 72.4 (C-3), 56.4 (C-22), 55.9 (C-17), 54.5 (C-14), 50.2 (C-9), 45.9 (C-26), 42.6 (C-13), 39.5 (C12), $37.0(\mathrm{C}-1), 36.0(\mathrm{C}-10), 34.8(\mathrm{C}-15), 31.6(\mathrm{C}-7$ and $\mathrm{C}-8), 28.7(\mathrm{C}-25), 27.4(\mathrm{C}-23), 26.0(\mathrm{C}-2)$, 25.3 (C-24), 20.8 (C-11 and C-19), 19.9 (C-27), 13.8 (C-21), 12.6 (C-18).

Selective acetylation of 8.-To an ice-cold solution of 3.7 g of 8 in 25 ml of pyridine, 20 ml of $\mathrm{Ac}_{2} \mathrm{O}$ was added. After 35 min cold $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was left at ambient temperature for 1 $h$. The precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried overnight in an oven at $45^{\circ}$. The residue was dissolved in toluene and taken to dryness under vacuum, and the products were separated by vacuum chromatography on Si gel. Elution with $\mathrm{C}_{6} \mathrm{H}_{14}$ - ErOAc (3:1) yielded 0.79 g of 5 . Further elution with $\mathrm{C}_{6} \mathrm{H}_{14}$ - $\mathrm{EtOAc}(2: 1$ ) yielded 2.08 g of 6 .
(22,25R)-3 $\beta$, 16 $\beta$-DIACETOXY-22,26-N-Cbz-EPIMINOCHOLESTAN-5,6-OXIDO-4-ONE [9].-To
Table 1. ${ }^{13} \mathrm{C}$ Chemical Shifts of N -Cbz-dihydrosolasodine [2] and Derivatives. ${ }^{*}$

| Carbon |  | Compound |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| C-1 |  | 37.3 | 38.1 | 37.0 | 36.9 | 38.0 | 34.8 | 37.9 | 37.3 | 36.1 | 37.7 | 37.9 | 37.2 | 36.0 | 37.4 | 36.0 | 36.0 | 35.9 | 35.8 | 38.8 |
| C-2 |  | 31.6 | 27.8 | 21.7 | 31.8 | 30.3 | 33.8 | 31.5 | 26.0 | 25.8 | 31.3 | 31.6 | 25.6 | 25.7 | 31.1 | 28.5 | 28.5 | 32.2 | 32.4 | 31.0 |
| C-3 |  | 71.6 | 73.8 | 75.4 | 71.6 | 65.2 | 198.6 | 75.5 | 74.0 | 79.3 | 74.4 | 75.4 | 74.0 | 79.3 | 74.3 | 76.2 | 76.1 | 74.5 | 74.4 | 204.7 |
| C-4 |  | 42.3 | 37.0 | 75.3 | 79.1 | 204.7 | 123.0 | 76.7 | 75.4 | 72.5 | 78.4 | 76.7 | 75.4 | 72.5 | 78.3 | 205.3 | 205.0 | 212.2 | 212.1 | 77.2 |
| C-5 |  | 141.0 | 139.5 | 141.8 | 139.0 | 69.5 | 170.4 | 50.9 | 49.4 | 51.5 | 49.2 | 50.9 | 49.1 | 51.5 | 49.2 | 57.4 | 57.4 | 56.9 | 56.8 | 51.5 |
| C-6 |  | 121.1 | 122.2 | 128.4 | 130.0 | 63.2 | 32.6 | 22.9 | 22.9 | 27.7 | 22.9 | 23.0 | 22.4 | 22.6 | 23.0 | 21.5 | 21.4 | 21.5 | 21.3 | 24.1 |
| C-7 |  | 31.6 | 31.4 | 31.6 | 31.5 | 29.8 | 31.7 | 31.2 | 31.2 | 31.4 | 29.1 | 31.0 | 30.8 | 31.2 | 29.3 | 30.1 | 29.9 | 30.2 | 30.1 | 29.1 |
| C-8 |  | 31.5 | 31.3 | 31.2 | 31.1 | 34.2 | 35.1 | 34.5 | 34.7 | 34.8 | 34.7 | 34.5 | 34.5 | 34.5 | 34.5 | 34.5 | 34.7 | 34.0 | 33.9 | 34.7 |
| C-9 |  | 50.1 | 50.1 | 50.2 | 50.2 | 48.6 | 53.6 | 53.9 | 58.9 | 53.9 | 54.0 | 53.0 | 54.9 | 51.5 | 54.0 | 53.7 | 54.2 | 54.0 | 53.8 | 53.8 |
| C-10 |  | 36.5 | 36.6 | 36.1 | 36.0 | 46.2 | 37.0 | 36.5 | 36.1 | 36.8 | 36.2 | 36.3 | 36.0 | 36.8 | 36.0 | 42.6 | 42.8 | 43.2 | 43.1 | 36.8 |
| C-11 |  | 20.7 | 20.7 | 20.2 | 20.2 | 21.2 | 20.7 | 20.8 | 20.8 | 20.8 | 20.8 | 21.2 | 21.2 | 20.7 | 20.7 | 20.2 | 20.1 | 20.2 | 20.1 | 21.0 |
| C-12 |  | 39.9 | 39.6 | 39.5 | 39.5 | 39.3 | 39.5 | 39.8 | 39.9 | 39.9 | 39.9 | 39.8 | 39.2 | 39.7 | 39.7 | 39.9 | 39.6 | 40.0 | 39.8 | 39.9 |
| C-13 |  | 42.3 | 42.6 | 42.6 | 42.5 | 42.9 | 42.6 | 42.7 | 42.2 | 42.2 | 42.3 | 42.8 | 42.8 | 42.8 | 42.7 | 42.3 | 42.3 | 42.4 | 42.4 | 43.0 |
| C-14 |  | 54.4 | 54.4 | 54.5 | 54.5 | 54.1 | 53.6 | 54.3 | 54.2 | 54.4 | 54.3 | 54.3 | 54.1 | 54.2 | 54.3 | 54.3 | 53.8 | 54.3 | 54.0 | 54.0 |
| C-15 |  | 37.3 | 34.8 | 34.8 | 34.7 | 34.7 | 34.8 | 33.6 | 33.6 | 33.6 | 33.6 | 33.8 | 34.8 | 34.7 | 34.8 | 33.6 | 34.4 | 33.7 | 34.4 | 33.6 |
| C-16 |  | 73.0 | 76.6 | 76.5 | 76.4 | 75.9 | 76.3 | 79.6 | 79.6 | 79.6 | 79.6 | 76.4 | 76.5 | 76.6 | 76.6 | 76.6 | 76.4 | 79.6 | 76.3 | 79.6 |
| C-17 |  | 57.0 | 55.9 | 55.9 | 55.8 | 55.9 | 55.8 | 58.3 | 58.2 | 58.2 | 58.2 | 55.9 | 55.9 | 55.9 | 55.9 | 58.2 | 55.9 | 58.2 | 55.9 | 58.2 |
| C-18 |  | 13.2 | 12.6 | 12.6 | 12.6 | 12.6 | 12.7 | 12.8 | 13.0 | 12.8 | 13.0 | 12.8 | 12.8 | 12.8 | 12.8 | 13.0 | 12.8 | 13.0 | 12.8 | 12.9 |
| C-19 |  | 19.3 | 19.1 | 20.9 | 20.2 | 18.2 | 17.3 | 13.5 | 13.3 | 13.5 | 13.4 | 13.5 | 13.3 | 13.5 | 13.4 | 13.6 | 13.4 | 13.4 | 13.4 | 13.7 |
| C-20 |  | 35.6 | 36.0 | 35.9 | 35.9 | 36.4 | 35.7 | 36.2 | 35.9 | 36.1 | 36.2 | 35.9 | 36.0 | 36.0 | 36.0 | 36.1 | 36.0 | 36.0 | 36.0 | 36.2 |
| C-21 |  | 14.2 | 13.8 | 13.8 | 13.8 | 13.7 | 13.7 | 13.8 | 13.5 | 13.8 | 13.7 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.7 |
| C-22 |  | 56.6 | 56.5 | 56.4 | 56.4 | 56.5 | 56.5 | 56.5 | 56.3 | 56.4 | 56.3 | 56.5 | 56.5 | 56.4 | 56.5 | 56.3 | 56.5 | 56.3 | 56.5 | 56.2 |
| C-23 |  | 27.7 | 27.4 | 27.4 | 27.3 | 27.6 | 27.4 | 27.8 | 27.9 | 27.8 | 27.9 | 27.8 | 27.4 | 27.4 | 27.4 | 27.6 | 27.4 | 27.6 | 27.8 | 27.8 |
| C-24 |  | 24.9 | 25.4 | 25.4 | 25.3 | 25.7 | 25.4 | 25.5 | 25.8 | 25.8 | 25.8 | 25.7 | 25.4 | 25.5 | 25.5 | 25.8 | 25.5 | 25.8 | 25.6 | 25.8 |
| C-25 |  | 28.9 | 28.8 | 28.7 | 28.7 | 29.0 | 28.7 | 28.9 | 29.0 | 29.1 | 29.4 | 28.7 | 28.8 | 28.8 | 28.8 | 29.1 | 28.8 | 29.0 | 28.9 | 29.1 |
| C-26 |  | 46.1 | 45.9 | 45.9 | 45.8 | 46.1 | 45.9 | 46.0 | 46.1 | 46.0 | 46.1 | 45.9 | 45.9 | 45.9 | 45.9 | 46.1 | 45.9 | 46.0 | 46.1 | 46.1 |
| C-27 |  | 19.9 | 19.9 | 19.9 | 19.9 | 20.3 | 19.9 | 20.0 | 20.4 | 20.4 | 20.4 | 19.9 | 20.0 | 20.0 | 20.3 | 20.4 | 20.1 | 20.4 | 20.2 | 20.4 |

[^0]a cold solution of 300 mg of 6 in 50 ml of $\mathrm{Me}_{2} \mathrm{CO}, 1.0 \mathrm{ml}$ of Jones reagent was added (drop by drop). After 4 h at room temperature, MeOH and $\mathrm{H}_{2} \mathrm{O}$ were added, the product was extracted with $\mathrm{CHCl}_{3}$, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue showed two spots on tlc which were separated by preparative tlc on Si gel using three developments with $\mathrm{C}_{6} \mathrm{H}_{14}$-EtOAc (2:1). The upper layer yielded 240 mg of 9 as a yellow powder, mp 95-97 ${ }^{\circ}$. Calcd for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{NO}_{8}, \mathrm{C} 70.56, \mathrm{H} 8.05, \mathrm{~N} 2.11$; found C 70.39, H 8.27, N 2.25. Ir $v \operatorname{max~cm}{ }^{-1} 1734,1695$, 1242 ; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.88(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.94(3 \mathrm{H}, \mathrm{d}$, $J=6 \mathrm{~Hz}, \mathrm{Me}-27), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=14,5$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{ax}), 3.30(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{H}-6), 3.78(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.10$ $(2 \mathrm{H}, \mathrm{ABq}, J=23,13, \mathrm{H}-\mathrm{Bz}), 5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.30(5 \mathrm{H}$, bs, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}(20 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) ppm $204.0(\mathrm{C}-4), 76.2(\mathrm{C}-17), 68.8(\mathrm{C}-3), 67.7(\mathrm{C}-5), 60.6(\mathrm{C}-6), 56.4(\mathrm{C}-22), 55.8(\mathrm{C}-17)$, 54.1 (C-14), 49.9 (C-9), 46.2 (C-10), 46.0 (C-26), 42.6 (C-13), 39.4 (C-12), 37.0 (C-1), 34.5 (C-15), 33.8 (C-8), 32.5 (C-7), 28.8 (C-2 and C-25), $27.4(\mathrm{C}-23$ ), 25.5 (C-24), 21.1 (C-11), $20.0(\mathrm{C}-27), 17.5$ (C-19), 13.7 (C-21), 12.5 (C-18).
( $22 S, 25 R$ )-3 $\beta$-HYDROXY-16 $\beta$-ACETOXY- $22,26-N$-Cbz-EPIMINO-CHOLESTAN-5,6-OXIDO-4-ONE [10].-A solution of 80 mg of 9 in 50 ml MeOH was saturated with a $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution and left at room temperature 24 h . Extraction with $\mathrm{CHCl}_{3}$ and usual workup gave 65 mg of 10 which did not crystallize: ir $v \max \mathrm{~cm}^{-1} 1732,1272,{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.87(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-$ 21), $0.93(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.05$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 2.99 ( $1 \mathrm{H}, \mathrm{dd}, J=14,5, \mathrm{H}-26 \mathrm{ax}$ ), $3.25(1 \mathrm{H}$, $\mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-6), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12$, $\mathrm{H}-\mathrm{Bz}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.30(5 \mathrm{H}$, bs, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nm}$ see Table 1.
( $22 S, 25 R$ )-16ß-ACETOXY-22,26-N-Cbz-EPIMINOCHOLEST-5-EN-3B-OL [4].-A solution of 6.3 g ( 0.01 mol ) of 3 in 280 ml MeOH was saturated with 18 ml of a $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution and left at room temperature overnight. Extraction with $\mathrm{CHCl}_{3}$ and usual workup yielded $5.2 \mathrm{~g}(0.0088 \mathrm{~mol})$ of 4 , which crystallized from ErOH; mp 176-178; ir $v \max \mathrm{~cm}^{-1} 3447,1734,1699,1241 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.82 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), 0.91 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 0.95 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), 0.99 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ $19), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=14,5, \mathrm{H}-26 \mathrm{ax}), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.80(1 \mathrm{H}, \mathrm{dd}, J=14$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{eq}), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 7.3(5 \mathrm{H}$, bs, aromatic H$)$.
( $22 S, 25 R$ )-16ß-ACETOXY-22,26-N-Cbz-EPIMINOCHOLEST-4-EN-3-ONE [11].-A mixture of 3.0 g of $\mathbf{4}, 135 \mathrm{ml}$ of toluene, and 27 ml of cyclohexanone was heated to complete solution. Aluminum isopropoxide ( 1.8 g ) was added, and 100 ml of toluene was distilled. $\mathrm{H}_{2} \mathrm{O}$ was added and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Chromatography over alumina yielded 1.95 g of $11: \mathrm{mp} 112-115^{\circ} ;[\alpha]^{25} \mathrm{D} 39.0$ $(c=0.031, \mathrm{MeOH})$. Calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{NO}_{5}, \mathrm{C} 75.35, \mathrm{H} 8.72, \mathrm{~N} 2.37$; found $\mathrm{C} 75.10, \mathrm{H} 8.59, \mathrm{~N} 2.35$. Ir $\nu \max \mathrm{cm}^{-1} 1732,1693 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.90(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-$ 21), $0.95(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 1.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=14,5$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{ax}), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 5.07(2 \mathrm{H}, \mathrm{ABq}, J=22,12, \mathrm{H}-\mathrm{Bz}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $16 \alpha), 5.64\left(1 \mathrm{H}\right.$, bs, H-4), $7.30(5 \mathrm{H}$, bs, aromatic H$)$; ${ }^{13} \mathrm{C}$ nmr see Table 1.

Hydroboration of 11.-The $\mathrm{BF}_{3}$-etherate complex and THF were distilled under $\mathrm{N}_{2}$, and the diglyme was purified (22) just before use. A solution of 1.5 g of $\mathbf{1 1}$ in 20 ml dry THF was put in contact with a stream of $\mathrm{N}_{2}$ containing $\mathrm{B}_{2} \mathrm{H}_{6}$ generated separately according to Z weifel and Herbert (11); 27 ml of $1.0 \mathrm{M} \mathrm{NaBH}_{4}$ in diglyme was added drop by drop to a solution of $\mathrm{BF}_{3}$ complex ( 6.9 ml ) in diglyme ( 6 ml ). After the addition of $\mathrm{NaBH}_{4}$ was complete, the generator was heated to $70^{\circ}$ to complete the transference of $\mathrm{B}_{2} \mathrm{H}_{6}$. The organo-borane complex was treated with 20 ml 3 N NaOH and 20 ml of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ under stirring. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was saturated with NaCl and extracted twice with 25 ml of $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated under vacuum. The residue ( 1.3 g ) showed two substances on tlc with $R_{f} 0.27$ and 0.16 . Separation was accomplished on Si gel using vacuum chromatography. $\mathrm{C}_{6} \mathrm{H}_{6}$ - EtOAc ( $5: 1$ ) eluted 12 ( 510 mg ): mp 144-146 ; $[\alpha]^{25} \mathrm{D} 16.4(c=0.011, \mathrm{MeOH})$. Calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{5}, \mathrm{C} 74.58, \mathrm{H} 9.64, \mathrm{~N} 2.35$; found $\mathrm{C} 74.43, \mathrm{H}$ 9.62, N 2.36. Ir $\nu$ max cm ${ }^{-1} 3519,1696,1262,1080 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.78(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18)$, $0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 1.03(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 1.14(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 3.02(1 \mathrm{H}, \mathrm{dd}$, $J=14,5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{Gax}), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 3.85(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq})$, $3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12, \mathrm{H}-\mathrm{Bz}), 7.3(5 \mathrm{H}$, bs, aromatic H$){ }^{13} \mathrm{C}$ nmr see Table 1 . Increasing the polarity of the solvent to $\mathrm{C}_{6} \mathrm{H}_{6}$-EtOAc (2:1) yielded 435 mg of $16: \mathrm{mp} 103-104^{\circ} ;[\alpha]^{25}$ D $27.0(c=0.0133, \mathrm{MeOH})$. Calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{NO}_{6} \cdot \mathrm{MeOH}, \mathrm{C} 71.10, \mathrm{H} 9.27, \mathrm{~N} 2.18$; found $\mathrm{C} 70.86, \mathrm{H}$ 8.91, N 2.19. Ir $v \operatorname{max~} \mathrm{~cm}^{-1} 3447,1734,1690,1266,1247,1064 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.76$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.89(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.98(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27)$, $3.04(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 3.80(1 \mathrm{H}, \mathrm{d}, J=14$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{eq}), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.3(5 \mathrm{H}$, bs, aromatic H$)$; ${ }^{13} \mathrm{C}$ nmr see Table 1.

Selective acetylation of 12.-A solution containing 400 mg of $\mathbf{1 2}$ in 3.0 ml of pyridine at $2^{\circ}$ was reacted with $\mathrm{Ac}_{2} \mathrm{O}$ for 15 min . Cold $\mathrm{H}_{2} \mathrm{O}$ was added, and the precipitare was washed with $\mathrm{H}_{2} \mathrm{O}$, dried at $45^{\circ}$, dissolved in toluene, and taken to dryness under vacuum. A mixture ( 360 mg ) of three products was obtained which was separated using vacuum chromatography over Si gel. $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{ErOAc}(10: 1)$ elured 13 as a gum: $[\alpha]^{25} \mathrm{D} 20.7\left(c=0.015, \mathrm{MeOH}\right.$ ). Calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{NO}_{7}, \mathrm{C} 72.44, \mathrm{H} 9.04, \mathrm{~N} 2.06$; found C 72.17, H9.29, N 2.18. Ir $\nu \operatorname{max~cm}^{-1} 1742,1697,1250 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 18), $0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.98(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 1.15(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.98(3 \mathrm{H}, \mathrm{s}$, OAc), $3.05(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.78(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 3.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha)$, $4.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.09(2 \mathrm{H}, \mathrm{ABq}, J=22,12, \mathrm{H}-\mathrm{Bz}), 7.3(5 \mathrm{H}$, bs, aromatic $\mathrm{H}) ;{ }^{13} \mathrm{C}$ nmr see Table 1. Increasing the polarity of the solvent yielded $14\left(120 \mathrm{mg}, R_{f} 0.66\right)$ as a gum. Calcd for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{NO}_{6}, \mathrm{C} 73.43, \mathrm{H} 9.32, \mathrm{~N} 2.20$; found $\mathrm{C} 73.65, \mathrm{H} 9.20, \mathrm{~N} 2.07$. Ir $\boldsymbol{v}$ max $\mathrm{cm}^{-1} 3452,1734$, 1697,$1250 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 1.02(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}, \mathrm{Me}-21), 1.18(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=14,5, \mathrm{H}-26 \mathrm{ax}), 3.50$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 3.80(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 5.10$ ( $2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=23,13, \mathrm{H}-\mathrm{Bz}$ ), 7.3 ( $5 \mathrm{H}, \mathrm{bs}$, aromatic H ); ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 . Finally, 15 was obtained, which could not be induced to crystallize. Calcd for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{NO}_{6}, \mathrm{C} 73.46$, H $9.33, \mathrm{~N} 2.20$; found C 73.55, H 9.47, N 2.15. Ir $\nu \operatorname{max~cm}^{-1} 3450,1734,1695,1248 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-18), 0.83$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 1.01 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 1.19 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), 2.05 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ) $, 3.05(1 \mathrm{H}, \mathrm{dd}, J=14,5, \mathrm{H}-26 \mathrm{ax}), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq})$, $3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 7.30(5 \mathrm{H}, \mathrm{bs}$, aromatic H ); ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 .

Selective acetrlation of 16.-Acetylation was performed in a manner similar to the acetylation of 12. The mixture of acetates was separated by vacuum chromatography on Si gel using $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{ErOAc}$. Compound 17 eluted first, $[\alpha]^{25} \mathrm{D} 13.6(c=0.006, \mathrm{MeOH})$. Calcd for $\mathrm{C}_{41} \mathrm{H}_{99} \mathrm{NO}_{8}, \mathrm{C} 70.97, \mathrm{H} 8.57, \mathrm{~N}$ 2.02; found C 70.85, H $8.40, \mathrm{~N} 1.90$. Ir $\boldsymbol{v}$ max $\mathrm{cm}^{-1} 1734,1695,1250,{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.76 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), 0.86 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), $0.89(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 0.98 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-$ 27), $1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.76(1 \mathrm{H}, \mathrm{d}, J=14$ $\mathrm{Hz}, \mathrm{H}-26 \mathrm{eq}), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 4.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.25$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ ), 7.3 ( 5 H , bs, aromatic H ) ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1. Increasing the polarity of the solvent elured 18. Calcd for $\mathrm{C}_{39} \mathrm{H}_{5} \mathrm{NO}_{7}, \mathrm{C} 71.86, \mathrm{H} 8.81, \mathrm{~N} 2.15$; found $\mathrm{C} 71.64, \mathrm{H} 8.72, \mathrm{~N} 2.04$. Ir $v \max$ $\mathrm{cm}^{-1} 1735,1694,1245 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.76$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), 0.80 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 0.90 $(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.93(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{Ac}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{Ac}), 3.00$ $(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 3.78(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.6(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $3 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.3(5 \mathrm{H}, \mathrm{bs}$, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1. Finally 19 was eluted: ir $v \max \mathrm{~cm}^{-1} 3447,1737,1695,1242 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ ), 0.85 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 0.90 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 0.95 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 3.75$ $(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.25(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-16 \alpha$ ), 7.3 ( 5 H , aromatic H ); ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.
(22S,25R)-3 $\beta$-acetoxy-16 $\beta$-ethoxy-22,26-N-Cbz-epimino-S $\alpha$-Cholestan-4-one [20]To a cold solution of $14(80 \mathrm{mg})$ in $\mathrm{Me}_{2} \mathrm{CO}$, Jones reagent was added drop by drop to slight excess. The reaction mixture was left at room temperature for 1 h . After addition of MeOH and $\mathrm{H}_{2} \mathrm{O}$, the mixture was extracted with $\mathrm{CHCl}_{3}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and taken to dryness under vacuum. Purification by vacuum chromatography over Si gel yielded 52 mg of 20: $\mathrm{mp} 110-112^{\circ} ;[\alpha]^{25} \mathrm{D}$ 0.6 ( $c=0.017, \mathrm{MeOH}$ ). Calcd for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{NO}_{6}, \mathrm{C} 73.66, \mathrm{H} 9.04, \mathrm{~N} 2.20$; found $\mathrm{C} 73.49, \mathrm{H} 9.08, \mathrm{~N}$ 2.35. Ir $\nu \operatorname{max~cm}{ }^{-1} 1749,1733,1696,1236 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.78$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$ ), 0.88 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21$ ), 1.01 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27$ ), 2.05 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ), 3.01 $(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 4.95(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 7.3(5 \mathrm{H}, \mathrm{bs}$, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 .
( $22 S, 25 R$ )-4 $\beta$-ACETOXY-16 3 -ethoxy-22,26-N-Cbz-EPimino-S-Cholestan-3-ONE [24].Compound $15(50 \mathrm{mg})$ was oxidized with Jones reagent in a similar manner to that described for 14 to yield 35 mg of 24 : if $\nu \operatorname{max~cm}{ }^{-1} 1749,1733,1696,1238 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ 18), $0.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.90(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.03(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.04(1 \mathrm{H}$, dd, $J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}$ ), 3.76 ( $1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}$ ), $3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 5.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $4 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 7.30(5 \mathrm{H}$, bs, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 .
( $22 S, 25 R$ )-3 $3,16 \beta$-dincetoxy- 22,26 -N-Cbz-Epimino-S $\alpha$-cholestan-4-ONe [21].-A cold $\mathrm{Me}_{2} \mathrm{CO}$ solution of 18 ( 60 mg ) was treated with Jones reagent, yielding, after vacuum chromatography, 47 mg of $\left.21: \mathrm{mp} 72-75^{\circ},[\alpha]^{25} \mathrm{D} 1.5(c=0.0135), \mathrm{MeOH}\right)$; if $\nu \operatorname{max~cm}{ }^{-1} 1733,1693,1240 ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.78(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.91(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{Me}-21), 0.96$
(3H, d, $J=7 \mathrm{~Hz}, \mathrm{Me}-27$ ), 1.96 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ), $2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$ ), 2.99 ( $1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}$ ), $3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=23,13 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.30$ ( 5 H , bs, aromatic H ); ${ }^{13} \mathrm{C}$ nmr see Table 1.
( $22 S, 25 R$ )-3 3 -HYDROXY-16 6 -ETHOXY- $(22,26)$ - $N$-Cbz-EPIMINO-S $\alpha$-CHOLESTAN-4-ONE [22].To a solution of 30 mg of $\mathbf{2 0}$ in MeOH , a few drops of $5 \%$ aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, and the mixture was left overnight at room temperature. Tle [Si gel plate, $\left.\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{EtOAc}(1: 1)\right]$ showed that the $3 \beta$ - 0 -acetate 20, $R_{f} 0.85$, had disappeared and that a new spot with $R_{f} 0.22$ was present. The solution was made alkaline and extracted with $\mathrm{CHCl}_{3}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated to dryness. The residue was crystallized from MeOH yielding 22 mg of 22: mp 138-142 . Calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{NO}_{5}, \mathrm{C} 74.83, \mathrm{H} 9.34, \mathrm{~N} 2.36$; found $\mathrm{C} 75.12, \mathrm{H} 9.47, \mathrm{~N} 2.28$. Ir $\nu \max \mathrm{cm}^{-1}{ }^{17} 10,1694 ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.87(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 1.00$ $(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 3.01(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 3.95$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 4.10(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 7.3(5 \mathrm{H}, \mathrm{bs}$, aromatic H ); ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 .
( $225,25 R$ )-3ß-hydroxy-16ß-ACETOXY-22,26-N-Cbz-S $\alpha$-EPIMINO-CHOLESTAN-4-ONE [23].In a similar manner, 30 mg of 21 was hydrolyzed to yield 23 mg of $23: \mathrm{mp} 151-155^{\circ}, R_{f} 0.15$ on a Si gel plate [solvent $\mathrm{C}_{6} \mathrm{H}_{14}$-EtOAc (1:1)]. Calcd for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{NO}_{6}, \mathrm{C} 73.11, \mathrm{H} 8.79, \mathrm{~N} 2.30$; found C 73.28, H 8.91, N 2.23. Ir $v \operatorname{max~}_{\mathrm{cm}}{ }^{-1} 1735,1710,1695,1245 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18)$, $0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{m} \mathrm{Me}-19), 0.91(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-21), 0.97(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-27), 2.10(3 \mathrm{H}, \mathrm{s}$ OAc), $3.00(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{ax}), 3.75(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{H}-26 \mathrm{eq}), 4.12(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}$, $\mathrm{H}-3 \alpha), 5.10(2 \mathrm{H}, \mathrm{ABq}, J=22,12 \mathrm{~Hz}, \mathrm{H}-\mathrm{Bz}), 5.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \alpha), 7.3(5 \mathrm{H}, \mathrm{bs}$, aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.

## ACKNOWLEDGMENTS

The authors acknowledge the support of CONICIT, Grant S1-1860, and Consejo de Desarrollo Cientifico, Humanistico y Tecnologico (ULA), Grant Fa-70-86. They also thank Oss-Diosynth, Holland, for a gift of solasodine hydrochloride.

## LITERATURE CITED

1. C. Benitz de Rojas, Revista Facultad de Agronomía (Maracay), 7 (3), 25 (1974).
2. A. Usubillaga, A. Paredes, P. Martinod, and J. Hidalgo, Planta Med., 23, 286 (1973).
3. E. Yibirin, G. Ayala, S. Cedillo-Vaz, and A. Usubillaga, Fitoterapia, LXI, 127 (1990).
4. A. Usubillaga, C. Seelkopf, I. Karle, J. Dale, and B. Witkop, J. Am. Cbem. Soc., 92, 700 (1970).
5. A. Usubillaga, J. Nat. Prod., 47, 52 (1984).
6. O. Rosenheim and W.W. Starling, J. Cbem. Soc., 337 (1937).
7. L.F. Fieser and R. Stevenson, J. Am. Cbem. Soc., 76, 1728 (1954).
8. J.R. Hanson and P.B. Reese, J. Chem. Soc., Perkin Trans. 1, 647 (1985).
9. C. Kusano, N. Aimi, and Y. Sato, J. Org. Chem., 35, 2624 (1970).
10. G. Blunden, J.A. Jaffer, K. Jewers, and W.J Griffin, J. Nat. Prod., 44, 441 (1981).
11. G. Zweifel and C. Herbert, in: "Organic Reactions." Ed. by A. Cope, John Wiley and Sons, New York, 1963, Vol. 13, pp. 1-54.
12. H.C. Brown and B.C. Subba Rao, J. Am. Cbem. Soc., 82, 681 (1960).
13. A. Usubillaga, Pbytochemistry, 27, 3024 (1988).
14. M. Bergmann and L. Zervas, Ber., 65, 1192 (1932).
15. D. Ben-Ishai and A. Bergher, J. Org. Chem., 17, 1564 (1952).
16. T. Tsuji, T. Kataoka, M. Yoshioda, Y. Sendo, Y. Nishitani, S. Hirai, T. Maeda, and W. Nagata, Tetrabedron, 30, 2793 (1979).
17. L.A. Carpino, J. Am. Cbem. Soc., 79, 98 (1957).
18. G.L. Stahl, R. Walter, and C. W. Smith, J. Org. Chem., 43, 2285 (1978).
19. F.E. Roberts, Tetrabedron Lett., 4, 325 (1979).
20. K. Schreiber, A. Walcher, and H. Roensch, Tetrabedron, 20, 1939 (1964).
21. H.E. Carter, R.L. Frank, and H.W. Johnston, in: "Organic Synthesis." Ed. by E.C. Horning, John Wiley and Sons, New York, 1955, Collective Vol. 3, pp. 167-169.
22. H.C. Brown, E.J. Mead, and B.C. Subba Rao, J. Am. Chem. Soc., 77, 6209 (1955).

[^0]:    ${ }^{\text {a Other signals: }} 67.1\left(\mathrm{Bz}^{\left(-\mathrm{CH}_{2}\right), 127.9,128.1,128.5,137.0(\text { Aromatic-C), } 157.6(\mathrm{Bz}-\mathrm{CO}) \text {, Acetate } 169.9-170.0(\mathrm{CO}), 20.6-21.1(\mathrm{Me}), \text { Ethoxy group }}\right.$
    $63.8\left(\mathrm{CH}_{2}-\mathrm{O}\right), 15.6(\mathrm{Me})$.

